The poly(A)-limiting element is a conserved cis-acting sequence that regulates poly(A) tail length on nuclear pre-mRNAs.
نویسندگان
چکیده
Most vertebrate mRNAs exit the nucleus with a 200+-residue poly(A) tail and are deadenylated to yield heterogeneous polymers of 50-200 adenosine residues on any given mRNA. We previously reported that Xenopus albumin mRNA and pre-mRNA have an unusually short, discrete 17-residue poly(A) tail and showed that regulation of poly(A) length is controlled independently by two cis-acting poly(A)-limiting elements (PLE A and PLE B) located in the terminal exon. The present study sought to determine the generality of this regulatory mechanism. Transferrin mRNA also has a discrete <20-nt poly(A) tail, and deletion mapping experiments identified an element homologous to the albumin gene PLE B within the terminal exon of the transferrin gene that conferred poly(A) length regulation on a globin reporter mRNA. Based on this similarity the PLE B sequence was used in a database search to identify candidate mRNA targets for regulated polyadenylation. Of the several hundred sequences identified in this manner we focused on HIV-EP2/Schnurri-2, a member of a family of genes encoding related zinc finger transcription factors. A striking feature of the PLE-like element in these genes is its location 10-33 bp upstream of the translation stop codon. We demonstrate that HIV-EP2 mRNA has a <20-nt poly(A) tail, for which the identified PLE-like sequence is responsible. These results indicate that the presence of a PLE can predict mRNAs with <20-nt poly(A) tails, and that nuclear regulation of poly(A) tail length is a feature of many mRNAs.
منابع مشابه
Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation.
Cytoplasmic polyadenylation is one mechanism that regulates translation in early animal development. In Xenopus oocytes, polyadenylation of dormant mRNAs, including cyclin B1, is controlled by the cis-acting cytoplasmic polyadenylation element (CPE) and hexanucleotide AAUAAA through associations with CPEB and CPSF, respectively. Previously, we demonstrated that the scaffold protein symplekin co...
متن کاملCircadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression.
Poly(A) tails are 3' modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguis...
متن کاملCstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα
Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is un...
متن کاملPolyadenylation Regulates the Stability of Trypanosoma brucei
Polyadenylation of RNAs plays a critical role in modulating rates of RNA turnover and ultimately in controlling gene expression in all systems examined to date. In mitochondria, the precise mechanisms by which RNAs are degraded, including the role of polyadenylation, are not well understood. Our previous in organello pulsechase experiments suggest that poly(A) tails stimulate degradation of mRN...
متن کاملPoly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element.
Xenopus oocytes contain several mRNAs that are mobilized into polysomes only at the completion of meiosis (maturation) or at specific times following fertilization. To investigate the mechanisms that control translation during early development, we have focused on an mRNA, termed G10, that is recruited for translation during oocyte maturation. Coincident with its translation, the poly(A) tail o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 16 شماره
صفحات -
تاریخ انتشار 1999